Subjunctive Software's new Strategy RPG "Goblin Harvest - The Mighty Quest" is now available for
Windows PC and iPad.


This page has been Textised!
The original page address was http://biorobotics.fau.edu/publications/index.php

Publications Journal Publications
  1. B. Kent and E. Engeberg, “Robotic Hand Acceleration Feedback to Synergistically Prevent Grasped Object Slip,” IEEE Transactions on Robotics, conditionally accepted.
  2. P. Kumar, R. Adams, A. Harkins, E. Engeberg, and R. Willits, “Stimulation frequency alters dorsal root ganglion neurite growth and directionality in vitro,” IEEE Transactions on Biomedical Engineering, http://dx.doi.org/10.1109/TBME.2015.2492998
  3. Hegana, S. I. Hariharan, and E. Engeberg, “Electromechanical Conversion of Low Temperature Waste Heat via Helical Shape Memory Alloy Actuators,” IEEE/ASME Transactions on Mechatronics, accepted for publication
  4. Engeberg, S. Dilibal, M. Vatani, J. Choi, and J. Lavery, “Anthropomorphic Finger Antagonistically Actuated by SMA Plates,” Bioinspiration & Biomimetics, vol. 10, 2015, DOI: http://dx.doi.org/10.1088/1748-3190/10/5/056002
  5. Vatani, E. Engeberg, and J. Choi, “Combined 3D Printing Technologies and Materials for Fabrication of Tactile Sensors,” International Journal of Precision Engineering and Manufacturing, vol. 16, p. 1375-1383, 2015, DOI: http://dx.doi.org/10.1007/s12541-015-0181-3
  6. Vatani, E. Engeberg, and J. Choi, “Conformal Direct-Print of Piezoresistive Polymer/Nanocomposites for Compliant Multi-Layer Tactile Sensors,” Additive Manufacturing, 2015, DOI: http://dx.doi.org/10.1016/j.addma.2014.12.009
  7. Kent and E. Engeberg, “Human-inspired feedback synergies for environmental interaction with a dexterous robotic hand,” Bioinspiration & Biomimetics, vol. 9, 2014, DOI: http://dx.doi.org/10.1088/1748-3182/9/4/046008
  8. Kent, N. Karnati, and E. Engeberg, “Electromyogram Synergy Control of a Dexterous Artificial Hand,” Journal of NeuroEngineering and Rehabilitation, vol. 11, 2014, DOI: http://dx.doi.org/10.1186/1743-0003-11-41
  9. Vatani, E. Engeberg, and J. Choi, “Detection of the position, direction and speed of sliding contact with a multi-layer compliant tactile sensor fabricated using direct-print technology,” Smart Materials and Structures, vol. 23, p. 2014, http://dx.doi.org/10.1088/0964-1726/23/9/095008
  10. Kent and E. Engeberg, “Grasp Dependent Slip Prevention for a Dexterous Artificial Hand,” International Journal of Humanoid Robotics, vol. 11, 2014, DOI: http://dx.doi.org/10.1142/S0219843614500169
  11. Kent, J. Lavery, and E. Engeberg, “Anthropomorphic Control of a Dexterous Artificial Hand via Task Dependent Temporally Synchronized Synergies,” Journal of Bionic Engineering, vol. 11, p. 236-248, 2014, DOI: http://dx.doi.org/10.1016/S1672-6529(14)60044-5
  12. Karnati, B. Kent and E. Engeberg, “Bioinspired Sinusoidal Finger Joint Synergies for a Dexterous Robotic Hand to Screw and Unscrew Objects of Different Diameters,” IEEE/ASME Transactions on Mechatronics, In a Focused Issue on Bio-Inspired Mechatronics, vol. 18, p. 612-623, 2013, DOI: http://dx.doi.org/10.1109/TMECH.2012.2222907
  13. Andrecioli and E. Engeberg, “Adaptive sliding manifold slope via grasped object stiffness detection with a prosthetic hand,” Mechatronics, vol. 23, p. 1171-1179, 2013, DOI: http://dx.doi.org/10.1016/j.mechatronics.2013.10.006
  14. Vatani, E. Engeberg, and J. Choi, “Force and slip detection with direct-write compliant tactile sensors using multi-walled carbon nanotubes/polymer composites,” Sensors and Actuators A: Physical, vol. 195, p. 90-97, 2013, DOI: http://dx.doi.org/10.1016/j.sna.2013.03.019
  15. Engeberg, “Human Model Reference Adaptive Control of a Prosthetic Hand,” Journal of Intelligent & Robotic Systems, vol. 72, p. 41-56, 2013, DOI: http://dx.doi.org/10.1007/s10846-013-9815-9
  16. Engeberg, “Adaptive Human Control Gains During Precision Grip,” International Journal of Advanced Robotic Systems, vol. 12, p. 1-12, 2013, DOI: http://dx.doi.org/10.5772/55479
  17. Engeberg and S. Meek, “Adaptive Sliding Mode Control for Prosthetic Hands to Simultaneously Prevent Slip and Minimize Deformation of Grasped Objects,” IEEE/ASME Transactions on Mechatronics, vol. 18, p. 376-385, 2013, DOI: http://dx.doi.org/10.1109/TMECH.2011.2179061
  18. Engeberg, “A physiological basis for control of a prosthetic hand,” Biomedical Signal Processing and Control, vol. 8, p. 6-15, 2013, DOI: http://dx.doi.org/10.1016/j.bspc.2012.06.003
  19. Engeberg and S. Meek, “Enhanced visual feedback for slip prevention with a prosthetic hand,” Prosthetics and Orthotics International, vol. 36, p. 423-429, 2012, DOI: http://dx.doi.org/10.1177/0309364612440077
  20. Engeberg and S. Meek, “Backstepping and Sliding Mode Control Hybridized for a Prosthetic Hand,” IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 17, p. 70-79, Feb. 2009, DOI: http://dx.doi.org/10.1109/TNSRE.2008.2006212
  21. Engeberg, S. Meek, and M. Minor, “Hybrid Force-Velocity Sliding Mode Control of a Prosthetic Hand,” IEEE Transactions on Biomedical Engineering, vol. 55, p. 1572-1581, May 2008, DOI: http://dx.doi.org/10.1109/TBME.2007.914672
  22. Engeberg and S. Meek, “Improved Grasp Force Sensitivity For Prosthetic Hands Through Force Derivative Feedback,” IEEE Transactions on Biomedical Engineering, vol. 55, p. 817-821, Feb. 2008, DOI: http://dx.doi.org/10.1109/TBME.2007.912675




Florida Atlantic University
BioRobotics Lab
Department of Ocean & Mechanical Engineering
777 Glades Road EW 272/273
Boca Raton, FL 33431

Connect



Textise: Back to top

This text-only page was created by Textise (www.textise.net). Copyright Subjunctive Software.
Find us on Facebook and Twitter or visit the Official Blog.